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Abstract. Paraphrase recognition is the task of Natural Language Processing
of detecting if an expression restated as another expression contains the same
information. Textual Entailment recognition, while being similar to paraphrase
recognition, is a task that consists in finding out if a given text can be observed
as a consequence of another text fragment, sometimes considering only part of
the original meaning, or adding some inferences based on common sense. Tra-
ditionally, for solving this problem, several lexical, syntactic and semantic based
techniques are used. In this work, we seek to use the less resources as possi-
ble, while being effective. For this, we perform a feature analysis for performing
Paraphrase Recognition and recognizing Textual Entailment experimenting with
the combination of several Natural Language Processing techniques like word
overlapping, syntactic analysis, and elimination of stop words. Particularly, we
explore using the syntactic n-grams technique combined with some auxiliary ap-
proaches such as stemming, synonym detection, similarity measures and linear
interpolation. We measure and compare the performance of our system by using
the Microsoft Research Paraphrase Corpus, and the RTE-3 test set for Paraphras-
ing and Textual Entailment, respectively. Syntactic n-grams produce good results
for Paraphrase Recognition. As far as we know, syntactic n-grams had not been
used for this task. For Textual Entailment, our best results were obtained by using
a simple word overlapping algorithm based on stemming and elimination of stop
words.

1 Introduction

The study of new techniques in Natural Language Processing (NLP) has become more
popular recently between researchers. As a consequence, there are several tasks that are
considered solved on this important area; however, NLP still has some challenges that
need to be solved. Some of them are Paraphrase Recognition and Textual Entailment.

The best results reported for these tasks usually have one characteristic in common,
and it is that they require costly resources such as combinations of lexical analysis,
semantics, logic inference, background knowledge and machine learning [10].

For languages like English, having the required resources may not be a problem
because English has been studied for several people, and there are many NLP tools
? Work done under support of CONACyT-SNI, SIP-IPN, COFAA-IPN, and PIFI-IPN
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that can be used for the purpose of this kind of systems. However, for other languages
that have not been studied deeply, resources could be a restriction for implementing
NLP systems. Therefore, the purpose of our work was to create a system that employed
as less resources as possible but still having a good performance on the Paraphrase
Recognition and Textual Entailment tasks.

In the following sections we will describe two standard tasks for Paraphrase Recog-
nition, and Textual Entailment, as well as the general methods for tackling them. For
this work we experimented with several NLP Techniques (See Section 2), and partic-
ularly we propose using syntactic n-grams, described in Section 2.3. We present our
experiments and their evaluation with two respective gold standards in Section 3 for
Paraphrase Recognition, and in Section 4 for Textual Entailment. Finally we draw our
conclusions in Section 5.

Paraphrase Recognition Paraphrasing is the process of restating an expression E1 in
other expression(s) E2, E3, . . . , En that convey the same meaning. For instance, the
expression:

– S1: Juan Rulfo wrote “El llano en llamas”.
– S2: “El llano en llamas” was written by Juan Rulfo.

are paraphrases of each other.
In general the paraphrase processing is divided in three main tasks that are described

below:

1. Extraction: this task has the goal of obtaining a set as large as possible of pairs (S1,
S2) that conform a paraphrase pair from a big corpus given as input of the system.

2. Generation: this task has the objective to yield a set of expressions (S2, S3, . . . ,
Sn) as large as possible that are paraphrases of the input string S1.

3. Recognition: this task has as objective to detect if two given expressions (S1, S2)
given are paraphrases of each other.

Textual Entailment Textual Entailment recognition is the task of finding out whether
the semantics of a text can be inferred from the semantics of another text. The entailing
and entailed text are termed text (T) and hypothesis (H) respectively. An example of
textual entailment is the following:

– T: The drugs that slow down Alzheimer’s disease work best the earlier you admin-
ister them.

– H: Alzheimer’s disease can be slowed down using drugs.

where we can see that H can be inferred from T. Therefore, this is a true textual entail-
ment pair.
An example of a non textual entailment pair is the following:

– T: It is important to stress that this is not a confirmed case of rabies.
– H: A case of rabies was confirmed.
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where the semantics of the text H cannot be inferred from the text T.
Differently to Paraphrase Recognition, Textual Entailment is a directional relation

because the hypothesis can be inferred from the text but not necessarily the opposite
way.

Many NLP tasks like document summarization (SUM),Information Retrieval (IR),
Information Extraction (IE) and Question Answering (QA) can take advantage of Para-
phrasing and Textual Entailment.

The most common approaches for these tasks and their required resources are:

– Logic based: theorem provers, knowledge bases, inference rules and logical con-
versions.

– Machine learning based: annotated examples.
– Decoding based: substitution rules, knowledge bases.
– Semantics based: semantic networks.
– Syntactic based: syntactic parsers.

In this work we experiment with the impact of lexical, syntactic and semantic tech-
niques for Paraphrase Recognition and Textual Entailment.

The lexical approaches operate directly with the input strings without making im-
portant changes to them; however, sometimes pre-processing is required.

The syntactic approaches aim to analyze sentences to show how their words interact
with each other. For this approach we need to obtain a syntactic tree that can be obtained
by using a syntactic parser.

The semantic approaches usually operate on a shallow semantic level; more specif-
ically, for this work we use Lexical Semantics which mainly consist of similarity mea-
sures between words and semantic relations (hypernym, hyponym, meronymy, holonymy,
. . . , etc.) obtained from thesauri or semantic networks like WordNet.

We experiment with several combinations of these approaches and auxiliary tech-
niques to find out which combination has the best performance. In the following sec-
tions we describe the implemented NLP techniques, and report the results of each ex-
periment that we performed.

2 Implemented NLP techniques

In this section we present the lexical, syntactic and semantic techniques we imple-
mented for Paraphrase Recognition and Textual Entailment.

Particularly we will show examples for Textual Entailment, being T the Text and
H the Hypothesis, although many of these techniques were used for Paraphrasing as
well, considering indistinctly one expression of the paraphrasing as Text, and other as
Hypothesis. See Section 3 for details on the experiments for Paraphrase Recognition.

2.1 Lexical Module

In this section we describe the Lexical Module we implemented. This module operates
at a shallow level of the given texts.
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The general algorithm for the lexical module consists in measuring the ratio of cov-
erage of the hypothesis by the given text, this means that, the more words are covered
in the hypothesis, the more likely they are to be a textual entailment pair.

We use a coverage threshold TH to decide if a given pair is or is not a textual en-
tailment pair; that is, if the coverage ratio of H is greater or equal than TH the answer
will be “YES” otherwise the answer is “NO”.

For example, given the pair:

– T: The Aztecs were a civilization based on war. Most of them were warriors.
– H: The Aztecs were warriors.

we can see that the words of H that appear on T are “The,” “Aztecs,” “were” and “war-
riors.” Therefore, the coverage ratio of H is 4

4 = 1 so, if TH were 0.7 then the answer
would be “YES”.

The general algorithm for this process is the following:

Given a pair of expressions T, H and a threshold TH:
H ← preprocessing(H)
T ← preprocessing(T )
LH ← length(H)
common← 0
for all words w in H do

if contains(T,w) then
common← common+ 1

end if
end for
coverage← common/LH

if coverage ≥ TH then
return “YES”

else
return “NO”

end if

The main part of the algorithm is the preprocessing step which receives a text frag-
ment (T or H) and changes it with an auxiliary technique like stemming, stop words,
similarity measures or negation detection in order to obtain a better result. The follow-
ing sections describe how these techniques are applied.

Preprocessing: Removing Stop Words. Like we mentioned before, stop words are
words that in many cases can be removed from a natural language text fragment with-
out loosing critical information, because stop words are very frequent words that appear
in most of the text fragments, and therefore the information conveyed by these words
usually is not relevant. There is not a definitive list of stop words; however, most com-
mon stop word lists consists of prepositions and determiners.

Our preprocessing system that handles stop words takes as input a text fragment and
returns it without the stop words that it contains. For example:
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Input: Bountiful arrived after war’s end, sailing into San Francisco Bay 21 August
1945. Bountiful was then assigned as hospital ship at Yokosuka, Japan, departing
San Francisco 1 November 1945.

Output: Bountiful arrived war’s end, sailing San Francisco Bay 21 August 1945. Boun-
tiful was assigned hospital ship Yokosuka, Japan, departing San Francisco 1 Novem-
ber 1945.

The intuition of this approach is that stop words can produce noise affecting the
coverage ratio hiding true entailment pairs to our recognition system. This can be seen
in the following example:

– T: After playing, the dog sat on the mat.
– H: A dog sat over a mat.

Here the coverage ratio is 3
6 = 0.5 that could be marked by the system as a false

textual entailment pair if the threshold was greater than 0.5, but we can see that this is
a true textual entailment pair.

Now, lets remove the stop words in the text and the hypothesis:

– T’: playing, dog sat mat.
– H’: dog sat mat.

where the coverage ratio is 3
3 = 1, showing that this is a true textual entailment pair,

like it was supposed to be.

Preprocessing: Stemming. The process of stemming consists in deleting the non es-
sential part of the words such as suffixes and prefixes in order to obtain the essential
part or stem of it. For example in the words engineering, engineered and engineer the
essential part or stem of the words is engineer.

Stemming is used to improve retrieval effectiveness because it allows to match
words that are not directly identical but their stem is the same. There are several stem-
ming algorithms [15], each one performing the stemming task in different ways, but
one of the most popular stemming algorithms for English is Porter’s algorithm [18], the
one used in this work.

Our preprocessing module that handles stemming takes as an input a natural lan-
guage text fragment and returns it with the stem representation of each word. For ex-
ample:

Input: Bountiful arrived after war’s end, sailing into San Francisco Bay 21 August
1945. Bountiful was then assigned as hospital ship at Yokosuka, Japan, departing
San Francisco 1 November 1945.

Output: Bounti arriv after war’ end, sail into San Francisco Bai 21 August 1945.
Bounti wa then assign as hospit ship at Yokosuka, Japan, depart San Francisco
1 Novemb 1945.

The intuition of this approach is that we can match words that are not directly the
same, but that share the same stem so that they are related in some way and can uncover
disguised relationships. Consider the following example:
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– T: After eating and playing with the kids, the doggy started sleeping.
– H: The dog played.

Here the coverage ratio is 1
3 = 0.33, that is a low coverage ratio considering that

this is a true textual entailment pair.
Now, lets stem both text and hypothesis:

– T’: After eat and plai with the kid, the doggi start sleep.
– H’: The dog plai.

that overcomes the previous coverage ratio with 2
3 = 0.66 that is closer to the correct

answer.

Preprocessing: Negation Detection. Negation is present in all languages and in most
cases statements are affirmative by default. Negation is used to change the polarity of
the statements and typically denotes something unusual or exceptions. At first glance,
negation seems easy to deal with because the problem can be thought as the task of
simply inverting the polarity of the items covered by the scope of negation; however,
this is not always the case.

Unlike affirmative statements, negation is marked by words (not, no, never) or af-
fixes (n’t,un-) and also connective adjuncts can be used to negate positive clauses, such
as neither and nor. Another words that indicate negation are nobody, none, nowhere,
etc.

There are two levels for handling the negation problem: lexical and syntactic.
The lexical approach uses the shallow representation of the sentences to detect nega-

tion, according to [3] not and n’t correspond to 79.61% of negative bearing word occur-
rences based on the WSJ Penn Treebank.

The syntactic approach tries to discover the negative polarity of sentences by look-
ing for patterns of negation based on a syntactic constituents parse tree, but this method
requires using a syntactic parser.

In this work we use the detection of negation in a naı̈ve way by searching for the
occurrences of the word not and words that end with n’t. Once found, we negate each
word prepending not until we reach either a comma or a period.

Our preprocessing module that handles negation takes as input a text fragment and
returns the negative representation of it, for example:

Input: The British government did not initially purchase the weapon and civilian sales
were modest. However the U.S. Civil War began in 1860 and the governments of
both the United States and the Confederacy began purchasing arms in Britain.

Output: The British government did not initially not purchase not the not weapon
not and not civilian not sales not were not modest. However the U.S. Civil War
began in 1860 and the governments of both the United States and the Confederacy
began purchasing arms in Britain.

where we add the prefix not to each word that is covered by the scope of the negation.
The intuition of preprocessing negation is that sometimes the system detects false

entailment pairs because it does not consider the polarity of the expressions. An exam-
ple of this is the following:
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– T: The new car is fast but is not equipped with mp3 player.
– H: The new car is equipped with mp3 player.

As we can see in the previous example, the coverage ratio is 8
8 = 1, which means

that independently of the selected threshold, the system would incorrectly mark these T
and H as a true textual entailment pair.

Lets use now the negation detection technique just described, we would have then
the following T’ and H’.

– T’: The new car is fast but not is not equipped not with not mp3 not player.
– H’: The new car is equipped with mp3 player.

After the preprocessing, the coverage ratio is 4
8 = 0.5 that helps the system to know

that this may not be a true textual entailment pair.

2.2 Syntactic Module

Once we have discussed the lexical module, we proceed to explain the functionality of
our syntactic module which operates at a deeper level of the input expressions T and H;
that is, the syntactic level aims to model how the words of a sentence depend on each
other. For this purpose, a previous parsing of T and H is required to obtain a dependency
syntactic parse tree or a constituent syntactic parse tree.

The dependency tree shows dependencies between the words of an expression. Each
edge is labeled with the dependency of the words that it connects, Figure 1 is an example
of this kind of tree. The constituent tree indicates how the words of a sentence are
grouped in lexical constituents that conform the whole expression in a hierarchy, as
shown in Figure 2.

For this module we used the Stanford syntactic parser [13] which is able to produce
both kind of syntactic parse trees. For dependency trees Stanford parser uses the fol-
lowing notation:

Subj(is, Gaspe)
Det(Gaspe, the)
Obj(is, peninsula)
Det(peninsula, a)

where each line represents an edge of the dependency tree. Figure 1 shows the
graphic representation of this particular example.

For constituent trees, Stanford parser uses the following notation:

(ROOT
(S

(NP (DT the) (NNP Gaspe))
(VP (VBZ is)

(NP (DT a) (NN peninsula)))))
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is

Gaspe peninsula

the a

Subj Obj

Det Det

Fig. 1. Example of dependency syntactic parse tree

is

S

NP VP

NNDT NPV

NNDT
the Gaspe

a peninsula

Fig. 2. Example of constituent syntactic parse tree

that corresponds to the tree shown in Figure 2. The general algorithm used in this
module measures the coverage ratio of the edges in H’s syntactic tree with regard to the
syntactic parse tree of T. This means that, the more edges covered in the hypothesis, the
more likely will be that it is a textual entailment pair.

In the same way that the lexical approach, we use a coverage threshold TH to decide
if a given pair is or is not a textual entailment pair.

Both kind of parse trees (dependency and constituent) can be combined as will with
complementary techniques like stop words, stemming, and negation, just described in
the previous section.

2.3 Syntactic n-grams

Some of the most popular Natural Language Processing techniques are n-grams which
are sequences of elements as they appear in the texts. The sequence of elements can be
composed by words, characters, part of speech tags (POS), etc. The n term corresponds
to number of elements to be considered by the sequence of elements. For example, the
input expression:

– The small funny dog barks,

126

Andrea Segura-Olivares, Alejandro García, Hiram Calvo

Research in Computing Science 70 (2013)



has the following 2-grams (bigrams): the small, small funny, funny dog and dog
barks, and the following 3-grams (trigrams): the small funny, small funny dog and funny
dog barks, and so on.

In this work we use syntactic n-grams (sn-grams), which are sequences of words
that are obtained from the elements appearing in the syntactic trees (dependency or
constituent trees) of a sentence. More specifically, sn-grams are constructed by the se-
quence of nodes that can be reached on any path of length n in the parse tree, namely,
this kind of syntactic n-grams is known as continuous syntactic n-grams. In the re-
mainder of this paper we will refer the continuous syntactic n-grams just as syntactic
n-grams or sn-grams. There are several types of syntactic n-grams based on the types
of elements they take into account:

– Word sn-grams: the elements of sn-grams are words.
– POS sn-grams: the elements of sn-grams are POS tags.
– Syntactic relations sn-grams: the elements of the sn-grams are names of syntactic

relations between words.
– Mixed sn-grams: they are composed by mixed elements, like words, POS tags

and/or syntactic relation types.

The main advantage of sn-grams is that they are based on syntactic relations of
words, and thus, each word is bound to its “real” neighbors, ignoring the arbitrariness
that is presented in the surface structure [22].

For example, the expression “the small funny dog barks” has the dependency syn-
tactic parse tree illustrated in Figure 3, from which we can obtain the following syntac-
tic bi-grams: barks dog, dog the, dog funny and dog small, and the following syntactic
trigrams: barks dog the, barks dog funny and barks dog small.

barks

the

dog

smallfunny

adj adjdet

sub

Fig. 3. Example of syntactic n-grams

Syntactic n-grams Extraction In this section we describe the procedure we followed
to obtain syntactic n-grams, specifically s2-grams, s3-grams and s4-grams used for our
Paraphrase Recognition system.

We based all our procedure on the syntactic dependency trees generated by the
Stanford syntactic parser [13].

Our extraction process consists of two main steps:

127

Feature Analysis for Paraphrase Recognition and Textual Entailment

Research in Computing Science 70 (2013)



1. Parse a expression with the Stanford parser.
2. Use the dependency relations obtained from the parse tree to form syntactic 2-

grams, s3-grams and s4-grams.

For Step 1, we feed the Stanford parser with an input sentence, for example: “Eco-
nomic news have little effect on financial markets.” then we have as outcome the corre-
sponding syntactic dependency tree, in this example is the following:

nn(news, Economic)
nsubj(have, news)
root(ROOT, have)
amod(effect, little)
dobj(have, effect)
amod(markets, financial)
prep on(effect, markets)

this observes the notation for syntactic dependency trees defined by the Stanford parser.
The above lines are the representation of the tree shown in Figure 4.

news effect

Economic little markets

financial

nsubj dobj

nn amod prep_on

amod

have

Fig. 4. Dependency tree for the sentence Economic news have little effect on financial markets

Syntactic 2-grams Extraction Using the parse tree corresponding to an expression,
it is straightforward to obtain the word sn-grams by removing the label of the relation
dependency of each edge of the tree, that is:

(news, Economic)
(have, news)
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(ROOT, have)
(effect, little)
(have, effect)
(markets, financial)
(effect, markets)

are the s2-grams from the previous example.

Syntactic 3-grams Extraction Once that we have obtained the s2-grams, we can use
them to conform the syntactic 3-grams by concatenating two s2-grams “a” and “b” if the
second element of “a” is the first element of “b”, for example (have, news) and (news,
Economic) conform the s3-gram (have, news, Economic). For the previous example we
have the following s3-grams:

(have, news, Economic)
(ROOT, have, news)
(ROOT, have, effect)
(have, effect, markets)
(have, effect, little)
(effect, markets, financial)

Syntactic 4-grams Extraction Based on the syntactic 2-grams and 3-grams, we ob-
tained the syntactic 4-grams. Given a syntactic 3-gram “a” and a syntactic 2-gram “b”,
we have the syntactic 4-gram “c” if the last element of “a” is the first element of “b”,
for example for the s3-gram (have, effect, markets) and the s2-gram (markets, financial)
we can conform (have, effect, markets, financial) as syntactic 4-gram. For the previous
example we have then:

(ROOT, have, news, Economic)
(ROOT, have, effect, little)
(ROOT, have, effect, markets)
(have, effect, markets, financial)

2.4 Semantic Module

A third approach that we experimented with is based on the semantic level. The seman-
tics treatment is a very complex task that still has not been completely solved; however,
our work has a shallow approach to it.

We are located in linguistic semantics that is a subfield of semantics; and linguistics,
that studies the meaning of linguistic expressions that not depend on the context. More
specifically, we use Lexical Semantics that is, the study of relations that exist between
words where each one is seen like a node in a graph or a hierarchy, from which is
possible to obtain semantic relations between them. For example, relations between
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hypernyms, hyponyms, synonymy, antonymy, meronymy, and holonymy. In this work
we only use the hypernym semantic relation and Lin’s similarity measure [14] obtained
from WordNet.

Preprocessing: Hypernym Representation. Sometimes the direct overlap between
words of the given text and hypothesis is not possible; however, it could be the case
that two words do not match directly but they match indirectly by means of a semantic
relationship like hypernymy, hyponymy, etc. For example, the words dog and canine are
not lexically matched, but using the hypernym relationship we can indirectly associate
them, therefore the system would be able to detect “hidden” matches. We based our
semantic module in the same algorithm that the lexical module uses; the difference is
in the preprocessing step of T and H. This is based on the hypernym semantic relation
that takes a text fragment as input and returns the hypernym representation for it. For
example:

Input: Female mosquitoes become infected with the malaria parasite when they draw
blood from humans with malaria.

Output: Animal dipterous insects become infected with the protozoal infection organ-
ism when they gully liquid body substance from homo with protozoal infection.

The intuition for this approach is that a more general representation of the concepts
of T and H can be used for looking matches between words with the original T and H
fragments, allowing the system to discover matches between words that were hidden
before. For example, considering the following input pair:

– T: Every one knows that every canine hates felines.
– H: Every dog hates cats.

Here the coverage ratio is 2
4 = 0.5, which is marked by the system as a false textual

entailment pair (the threshold was set to 0.5), but we can see that this is a true textual
entailment pair. Now, lets apply the hypernym preprocessing module in the hypothesis:

– T: Every one knows that every canine hates felines.
– H’: Every canine hates felines.

where the coverage ratio is 4
4 = 1, showing that this is a true textual entailment pair, like

it was supposed to be.

Semantic Approach with Lin’s Similarity Measure. One special situation found in
the lexical algorithm described earlier is presented when two words are not equivalent
nor they are matched by the hypernym relationship, but they can be matched indirectly.
For example, consider the words spoon and fork that are not directly equivalent but are
closely related.

The relatedness treatment of words can help in the Textual Entailment recognition
task allowing to recognize hidden matches between words that are not equivalent but
are related.
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The way on which the similarity or relatedness of words is measured is called sim-
ilarity measure. There are several similarity measures but one of the most used ones is
Lin’s similarity measure [14] that is defined as:

Simlin = 2×IC(LCS)
IC(concept1)+IC(concept2)

which is based on the information content (IC) of two concepts under the WordNet
hierarchy.

The modified recognition algorithm based on the similarity measure is as follows:

Given a pair of expressions T, H a threshold TH and a similarity threshold STH:

T ← preprocessing(T )
H ← preprocessing(H)
LH ← length(H)
common← 0
for all word w in H do

for all word m in T do
if equals(w,m) then
common← common+ 1

else
if LinSimilarity(w,m) ≥ STH then
common← common+ 1

end if
end if

end for
end for
coverage← common/LH

if coverage ≥ TH then
return “YES”

else
return “NO”

end if

As can be seen, the similarity measure algorithm is almost the same as the general
lexical algorithm, with the difference that if a direct match cannot be found for a given
word “m” of the hypothesis, its similarity with each word of the text is calculated, and
if it is larger than a specified similarity threshold (THS), then the pair is considered as a
match.

Additionally we use the combination of the preprocessing modules defined in the
lexical section in order to improve the performance of the system.

3 Experiments for Paraphrase Recognition

The development of this section is focused on the Paraphrase Recognition task. The
evaluation and tests will be based on the Microsoft Research Paraphrase Corpus (MSRP)
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that consists in 5,801 pairs of paraphrase candidates which are divided in two sets: test
and training.

The training set is composed of 4,076 pairs, whereas the test set has 1,725 pairs.
Each pair was submitted to human judges who assigned a one label of 1 when it is a
true paraphrase pair and 0 otherwise. An example of a pair is the following:

1 702876 702977 Amrozi a c c u s e d h i s b r o t h e r , whom he c a l l e d ‘ ‘ t h e
w i t n e s s ” , o f d e l i b e r a t e l y d i s t o r t i n g h i s e v i d e n c e . R e f e r r i n g t o
him as on ly ‘ ‘ t h e w i t n e s s ” , Amrozi a c c u s e d h i s b r o t h e r o f
d e l i b e r a t e l y d i s t o r t i n g h i s e v i d e n c e .

The Paraphrase Recognition task consists in, given two expressions S1 and S2, de-
cide if they are a paraphrase of each other. The following sections describe the process
and evaluation of our paraphrase recognition system based on syntactic n-grams.

3.1 Recognition Process

Our experiments are based on the idea that syntactic n-grams can provide more informa-
tion than classic n-grams because they work at a deeper level considering the relations
and dependencies between words of the input expression.

Syntactic n-grams can also be useful for detecting the “real” neighbors of each word
ignoring the arbitrariness that is presented on the surface structure such as adjectives
before nouns. For example in the previous sentence “the small funny dog barks,” we
can do the following comparison:

Table 1. n-grams vs. syntactic n-grams.

2-grams Syntactic 2-grams
the small barks dog
small funny dog the
funny dog dog funny
dog barks dog small

As can be seen in Table 1, traditional 2-grams produce pairs that convey less infor-
mation like “small funny” or ”the small”, whereas the syntactic 2-grams are all mean-
ingful pairs.

We experimented with five different approaches for the recognition process:

1. Overlapping Syntactic n-grams.
2. Overlapping Syntactic n-grams and stemming.
3. Overlapping Syntactic n-grams and synonym detection.
4. Overlapping Syntactic n-grams and Lin’s similarity measure.
5. Overlapping Syntactic n-grams and linear interpolation.
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As in Textual Entailment, the general process for the Paraphrase Recognition sys-
tem independently of the implemented approach, consists in measuring the differences
between the sn-grams of the input expressions S1 and S2. A difference threshold T is
used to decide if the input expressions are or not paraphrases of each other. That is, if
the difference between them is less than the threshold T, they are paraphrases; otherwise
they are not paraphrases. The algorithm is presenting below:

Given two sentences S1 and S2 and a threshold of difference T:

L1 ← sn-grams(S1)
L2 ← sn-grams(S2)
if size(L1) ≥ size(L2) then
T ′ ← size(L1)× T

else
T ′ ← size(L2)× T

end if
D ← sn-gramsDifferences(L1, L2)
if D < T ′ then

return “YES”
else

return “NO”
end if

In the next subsections we describe each of the approaches used for our recognition
system, along with the result obtained with each one of them.

We use the Microsoft Research Paraphrase Corpus to evaluate the accuracy, preci-
sion, recall and F-measure scores of our system. With these values is possible to com-
pare the performance achieved by our Paraphrase Recognition system with other works
of the state of the art.

The Microsoft Research Paraphrase Corpus provides two datasets: train and test.
With the train set we adjust the optimal value for our difference threshold to be the one
that produces the best scores. Once that we decided the optimal threshold, we use it to
evaluate the system with the test set. According to our experiments, the best threshold
for our system is 0.85.

3.2 Overlapping Syntactic N-grams

The simplest approach implemented in our system, is just to count the overlapping
syntactic n-grams in the two input expressions S1 and S2. We experimented with s2-
grams, s3-grams and s4-grams independently.

We repeated each experiment adjusting the maximum difference threshold in the
range of 0.2 to 0.9. This approach is based on the general process algorithm. For in-
stance, lets suppose that we are given the following input expressions under a threshold
T of 0.3:

S1: A mathematician solved the problem.
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S2: The problem was solved by a mathematician.

applying our s2-grams extraction module we obtain the s2-grams shown on Table 2 for
S1 and S2 respectively.

Table 2. Syntactic 2-grams corresponding to S1 and S2.

s2-grams for S1 s2-grams for S2

(mathematician, a) (problem, the)
(solved, mathematician) (solved, problem)
(ROOT, solved) (solved, was)
(problem, the) (ROOT, solved)
(solved, problem) (mathematician, a)

(solved, mathematician)

Results. For this example, we can see that T’ can be computed from Table 2: T’ =
size(L2) × T = 6 × 0.3 = 2. The remaining process consist on determining if S1 and
S2 do not differ by more than 2 words. It can be seen that S1 and S2 differ only on the
s2-gram (solved, was), therefore this would be considered as a true paraphrase pair by
the system. The same procedure is applied individually for s3-grams and s4-grams.

Table 3 shows results obtained when we use the basic technique of common syntac-
tic n-grams for syntactic 2-grams, 3-grams and 4-grams.

As we can see in the table, our system achieves the highest F-measure of 80.3%
whens2-grams are used. However it can also be seen that the higher order of the syntac-
tic n-grams, the higher precision value is obtained. On the other hand, the higher order
of syntactic n-grams, the less recall value is obtained.

Table 3. Results of syntactic n-grams approach

Accuracy Precision Recall F-measure
S2-grams 68.3% 68.3% 97.4% 80.3%
S3-grams 64.2% 72.8% 73.6% 73.2%
S4-grams 56.9% 74.4% 53.7% 62.4%

3.3 Overlapping Syntactic N-grams and Stemming

As explained in Section 2.1 for Textual Entailment, Stemming is a process that removes
the non essential part of the words such as suffixes and prefixes in order to obtain the
essential part or stem of a word. For example in the words fishing, fished, fisher the
stem is fish.
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We use the Porter stemming algorithm [18], since it is the most popular stemming
algorithm for English, but there are many others.

Our sn-grams post processing module that works with stemming, takes as input a
syntactic n-gram and returns the stemmed representation of it, for example:

– (redness, car)→ (red, car)
– (fully, car, engineered)→ (fulli, car, engin)

The Paraphrase Recognition process based on stemming performs the following
steps:

1. Obtain sn-grams for each input expression.
2. Apply stemming for each sn-gram obtain in the previous step.
3. Use the general algorithm.

With this approach we intent to recognize syntactic n-grams that can not be related
in a direct way but that may be indirectly related by means of their stems.

Results of Overlapping Syntactic N-grams and Stemming. Now we show in Table
4 the achieved results for the system when post processing of the syntactic n-grams is
used, by transforming each one on its stemmed representation.

As the table shows, the stemming of syntactic n-grams slightly increases the general
performance of the system, yielding an increase in accuracy, precision, recall and the
F-measure.

The F-measure obtained with this approach is 80.6% by using s2-grams. Again the
precision increases and the recall decreases when a higher degree of syntactic n-gram
is used.

Table 4. Results of syntactic n-grams with stemming approach

Accuracy Precision Recall F-measure
S2-grams 68.6% 68.4% 97.9% 80.6%
S3-grams 64.5% 72.5% 74.9% 73.7%
S4-grams 57.8% 74.4% 55.7% 63.7%

3.4 Overlapping Syntactic N-grams and Synonym Detection

One way of finding “hidden” related pairs of words in sentences or related pairs of
syntactic n-grams in the paraphrase recognition process is by using synonyms. For in-
stance, suppose the syntactic 2-grams: (car, red) and (automobile, carmine): our basic
paraphrase recognition system would not match this pair, but it can be seen that they
should be considered as a match.

In order to cope with this kind of problems, we introduce a synonym detection
module based on WordNet synsets that are considered as groups of synonym words.
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Two words are synonyms if they can be interchanged under the same scope without
modifying the truth value of an expression, in other words, for our purpose, synonyms
are words that are considered equivalent. For example, the words plant and flower, home
and house, kid and child can be considered as equivalent.

Applying this intuition to our Paraphrase Recognition system, a post processing
module was developed. This module takes a syntactic n-gram as input and returns four
equivalent syntactic sn-grams by obtaining the most common synonym of each word
from WordNet.

Taking the first example of this section, if we apply our module to (car, red), we
obtain the following:

– (car, red)
– (auto, red)
– (car, redness)
– (auto, redness)

This answer is conformed by the combination of the synonyms of the words car and
red, the combination is required because we need to compare each possible variation of
the pair, augmenting the recognition capability of the system.

The result of applying the same procedure to (automobile, carmine) is:

– (automobile, carmine)
– (auto, carmine)
– (automobile, red)
– (auto, red)

From the previous two answers the system now is able to detect the match between
(car, red) and (automobile, carmine) because both share the same synonym form (auto,
red).

A similar process is used for syntactic 3-grams and 4-grams treatment, the only
difference is that we obtain 9 and 16 synonym combinations respectively.

Results of Overlapping Syntactic N-grams and Synonyms. Table 5 shows the sys-
tem performance when we apply synonym postprocessing of sn-grams. This time the
synonym approach helps to improve the basic approach (direct overlapping), but it does
not contribute as much as stemming.

The highest F-measure is 80.4% with s2-grams again.

Table 5. Results for the synonym approach

Accuracy Precision Recall F-measure
S2-grams 68.4% 68.3% 97.7% 80.4%
S3-grams 66.4% 66.9% 97.6% 79.4%
S4-grams 65.4% 67% 94.5% 78.4%
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3.5 Overlapping Syntactic N-grams and Lin’s Similarity Measure

Another related problem found on the process of recognizing a match between syn-
tactic n-grams is presented when two elements are not directly equivalent and also not
matched by using the synonym technique described in the previous section. An exam-
ple is the following pair of syntactic 2-grams: (song, romance) and (music, love). In
this case there is not a direct match between words and, if we consider the synonyms
shown on the Table 6, we can see that no match can be found. For this reason we use

Table 6. Example: Synonym approach.

Synonyms (song, romance) Synonyms (music, love)
(song, romance) (music, love)
(vocal, romance) (euphony, love)
(song, romanticism) (music, passion)
(vocal, romanticism) (euphony, passion)

an additional approach based on word similarity measures. More specifically, we use
the same similarity measure we used for Textual Entailment shown in Section 2.4. For
reader’s convenience, we reproduce here the formula for its calculation: [14]:

Simlin = 2×IC(LCS)
IC(concept1)+IC(concept2)

Using this measure we try to detect similar syntactic n-grams by considering two
corresponding words as a match if their similarity measure is greater than, or equal to,
a threshold value.

The Lin similarity measure between song and music is 0.86 and between romance
and love is 0.53; thus, if the threshold of similarity were 0.5, the pair of syntactic 2-
grams (song, music) and (romance, love) would be considered as a match.

Overlapping Syntactic N-grams and Lin Similarity. Now we present the results
obtained by the system when we use a comparison technique between sn-grams with
Lin’s similarity measure, instead of directly comparing them.

Table 7 shows that the performance of the system decreases in accuracy, precision,
recall and F-measures with regard to the previous shown approaches. The highest F-
measure obtained is 80.1%, again with the syntactic s2-grams.

3.6 Overlapping Syntactic N-grams and Linear Interpolation

An additional approach that we tried in order to improve the system performance is
based on the linear interpolation technique used in traditional n-grams that consists in
creating a linear interpolation of the syntactic 4-grams, 3-grams and 2-grams models,
each one weighted by a λ value, where the sum of all lambdas must be equal to 1.
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Table 7. Results of syntactic n-grams with Lin’s similarity

Accuracy Precision Recall F-measure
S2-grams 67.4% 67.4% 98.7% 80.1%
S3-grams 61.1% 72.1% 77.3% 74.6%
S4-grams 57.3% 73.3% 56.4% 63.8%

We think that overlapping s4-grams mean a stronger relationship between two sen-
tences compared with s3-grams. We considered the same idea between s3-grams and
s2-grams, therefore, we assigned greatest weight to s4-grams, then a smaller weight for
s3-grams and the lowest weight was assigned to s2-grams. The intuition here is that the
higher the degree of overlapping n-grams, the more similar two texts are.

We represent this idea as follows:

FS = λ4×snGrams(S1, S2, 4)+λ3×snGrams(S1, S2, 3)+λ2×snGrams(S1, S2, 2)

Where snGrams(S1, S2, n) represents the common syntactic n-grams of degree n
between the expressions S1 and S2 and λ4 + λ3 + λ2 = 1.

Consider the following example:

– S1: A mathematician solved the problem.
– S2: The problem was solved by a mathematician.

As we can see from the Table 8 the two input expressions do not have overlapping
syntactic 4-grams, therefore our system based on s4-grams would mark the expressions
as a false paraphrase pair; however, it can be seen that by applying linear interpolation
we are able to obtain an score grater than zero, allowing the system to consider a differ-
ent answer. The computation using this approach is:

FS = 0.5× 0 + 0.3× 2 + 0.2× 4 = 1.4,

where λ4 = 0.5, λ3 = 0.3, λ2 = 0.2.

The obtained value is then normalized to get a final score between 0 and 1 that can
be used together with a similarity threshold to decide if the expressions are or are not a
true paraphrase pair.

Results of Overlapping Syntactic N-grams and Linear Interpolation. Now we
present in Table 9 the results obtained for the system when we use the linear interpo-
lation approach. As can be seen, the system performance decreases considerably when
using Linear Interpolation; in part, due to the fact that the lambda values require an ex-
haustive procedure to obtain an optimal value for them. We experimented with several
lambda values with low success.

138

Andrea Segura-Olivares, Alejandro García, Hiram Calvo

Research in Computing Science 70 (2013)



Table 8. Linear interpolation of syntactic n-grams

n Input 1 Input 2 snGrams(S1, S2, n)

2

(mathematician, a) (mathematician, a)

4
(problem, the) (problem, the)
(solved, problem) (solved, problem)
(solved, mathematician) (solved, mathematician)

(solved, was)

3
(solved, mathematician, a) (solved, mathematician, a)

2
(solved, problem, the) (solved, problem, the)

4 No No 0

For this particular approach we used a threshold of 0.2. Note that in this case the
algorithm is based on similarity, contrasting with the other approaches that are based
on distance.

Table 9. Results with linear interpolation

λ4, λ3, λ2 Accuracy Precision Recall F-measure
0.5, 0.3, 0.2 60.1% 75.1% 59.8% 66.6%
0.4, 0.3, 0.3 62.9% 74.6% 67% 70.6%
0.7, 0.2, 0.1 57.8% 76.6% 52.6% 62.4%

The best F-measure shown in Table 9 is 70.6%, with
λ4 = 0.4, λ3 = 0.3 and λ2 = 0.3.

4 Experiments for Textual Entailment

In this section we describe and compare the experiments for the different approaches
described in Section 2 and their combinations used by our system. The evaluation of
this system is based on the PASCAL RTE-3 dataset. We used the development set for
calibrating the best threshold value and then we used the test set for the final evaluation.
The system evaluation is based on the accuracy, precision, recall and the F-measure
score; however we focus mainly on the accuracy measure, because that is the one used
in the RTE challenge to compare results.

4.1 The Lexical Approach Results

The Table 10 shows the scores obtained by our system with the lexical approach, it
shows the basic approach (simple overlapping) and all the combinations of comple-
mentary techniques used. Notice how the stemming and removing stop words techniques
contribute in both ways, individually and together to improve the performance of the
base system that does not use any additional techniques.
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An important observation is that apparently the negation treatment not only does
not help to improve the results but also affects it.

We conclude that the best combination under the auxiliary techniques that we used
for the lexical module is using stemming and removing stop words together, reaching
and accuracy of 66% and precision of 61.5%, with a threshold of 0.5.

Table 10. Lexical results

Stemming Stop words Negation Accuracy Precision Recall F-measure Threshold
64.3% 62.8% 74.3% 68.1% 0.65

X 64.7% 61.5% 82.9% 70.6% 0.65
X 65.2% 62.2% 81.9% 70.7% 0.55

X 61.1% 61.4% 64.6% 63.0% 0.50
X X 66.0% 61.5% 89.7% 73.0% 0.50

X X 65.0% 62.0% 81.4% 70.4% 0.55
X X 64.2% 62.9% 73.4% 67.7% 0.70
X X X 65.6% 61.2% 89.5% 72.7% 0.50

4.2 The Syntactic Approach Results

Now we discuss the syntactic approach results. Our intuition was that the deeper the
level of analysis, the more accurate is the system; however, by using a basic syntactic
approach, we got lower results; maybe because a more sophisticated syntactic technique
is required.

Table 11 shows the achieved results. For each experiment we determined the best
threshold. We first tried a simple edge overlapping technique; then we tried splitting
both T and H by periods with the idea of creating a more accurate parsing. We also
present the results of using constituent trees and the auxiliary techniques applied after
the parsing step.

The best score achieved is an accuracy of 58.5% and precision of 56.8% under a
threshold of 0.1.

Table 11. Syntactic results

Overlapping Edges Accuracy Precision Recall F-measure Threshold
Simple 57.0% 56.4% 70.0% 62.5% 0.05
Splitting by periods 57.8% 56.8% 73.6% 64.1% 0.05
Constituents 54.2% 52.9% 95.1% 68.0% 0.30
Stop words 57.3% 59.0% 55.1% 56.9% 0.15
Negation 56.8% 57.0% 64.1% 60.3% 0.05
Stemming 58.5% 56.8% 79.2% 66.1% 0.10
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4.3 The Semantic Approach Results

Table 12 shows the results achieved by our semantic approach. Conversely to the lexi-
cal approach, negation treatment gives some benefit, but not enough to reach a higher
score. Note also that in this case, word similarity does not contribute to overcome the
results. The best combination was hypernym, stemming and stop words altogether, with
an accuracy of 64.0% and a precision of 61.0% with a threshold of 0.65.

Table 12. Semantic results

Technique Accuracy Precision Recall F-measure Threshold
Hypernym 62.6% 63.7% 62.6% 63.2% 0.70
Hypernym and stemming 62.2% 59.6% 81.2% 68.8% 0.60
Hypernym and stop words 62.6% 60.1% 80.4% 68.8% 0.55
Hypernym, stop words and word sim. 60.3% 58.2% 80.0% 67.4% 0.80
Word similarity 55.3% 53.6% 94.1% 68.3% 0.10
Word similarity and stemming 54.3% 53.0% 96.0% 68.3% 0.10
Word similarity and stop words 60.0% 60.6% 62.6% 61.6% 0.25
Word similarity, stop words and stemming 60.5% 60.5% 65.6% 62.9% 0.25
Hypernym, stop words and negation 62.5% 60.1% 79.7% 68.5% 0.55
Hypernym and negation 63.5% 61.0% 79.5% 69.0% 0.65
Hypernym, stemming and stop words 64.0% 61.0% 81.9% 70.0% 0.65

5 Conclusions and Future Work

5.1 Paraphrase Recognition

Summarizing the result tables shown in Section 3, it can be seen that the best scores
the system yields is an F-measure of 80.6%, this is obtained by using the auxiliary post
processing technique of stemming, applied to each syntactic n-gram obtained in the
syntactic parse step.

The synonym technique is also a good approach since the performance of the system
improved with regard to the basic algorithm, which consists on simple syntactic n-grams
overlapping; however, it does not contribute as much as the stemming technique.

On the other hand the Lin’s similarity measure and linear interpolation approaches
that we applied do not seem to contribute for this specific task.

After experimenting with syntactic n-grams and some complementary techniques,
we conclude that syntactic n-grams can be used successfully achieving good results in
the Paraphrase Recognition task; however there is still a lot of room for improvement.

Table 14 shows the unsupervised reported scores using the Microsoft Research Para-
phrase Corpus and we also show our results in order to compare them with these works.

As future work, a deeper analysis can be done, dealing on how to apply similarity
measures to compare syntactic n-grams and also how to choose the optimal lambda
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values for the linear interpolation approach. Another approach that remains to be tested
is the use of non-continuous syntactic n-grams [21] since the syntactic n-grams used in
this work were continuous syntactic n-grams.

Table 13. Unsupervised reported works

Author Accuracy F-measure
Fernando and Stevenson, 2008 74.1% 82.4%
Islam and Inkpen, 2007 72.6% 81.3%
Mihalcea et al., 2006 70.3% 81.3%
our system, 2013 68.6% 80.6%
Rus et al., 2008 70.6% 80.5%
Mihalcea et al., 2006 65.4% 75.3%

5.2 Conclusions for Textual Entailment

Comparing Tables 10, 11 and 12, we can see that the best result achieved by our system
was obtained under the simple lexical approach with an accuracy of 66% and a precision
of 61.5%. Although this is not the highest score compared with the state of the art for
RTE-3, it shows that by using a few additional resources it is possible to obtain fair
results. This is good news, because in some languages like Tagalog, complex resources
could represent a restriction for Textual Entailment recognition systems.

In Table 14 we can see the top 8 reported results on RTE-3 compared with our
system, showing that most of them use several auxiliary resources like theorem provers,
knowledge bases, logical inference and so on.

Table 14. Resources used

Author Accuracy Precision L
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Hickl 80% 88.15% X X X X X
Tatu 72.25% 69.42% X X X X

Iftene 69.1% - X X X
Adams 67% - X X X

Zanzotto 66.7% 66.7% X X X
Wang 66.5% - X X

Us 66% 61.5% X
Blake 65.8% 60.96% X X X

Ferrandez 65.6% - X X
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As future work, negation treatment can be improved, as well as the syntactic tech-
nique used for this work, taking advantage of more information Linguistics can provide.
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